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1 Preliminaries

Notations:
* ¢, ¢ and @, denotes predicates.

* O[q,p)@ denotes the Eventually STL operator, evaluated on the time interval [a,b].

* O[qp) ¢ denotes the Always STL operator, evaluated on the time interval [a,b].

* Q1l[, ) P2 denotes the Until STL operator, evaluated on the time interval [a,b].

* 7 denotes the current time.

» T denotes a set of discrete times such that T = N.

* B, indicates the offline version of an STL property ¢ which returns a Boolean value.

. T; indicates the positive version of an STL property @, at time 7, which returns a Boolean value.

. U; indicates the indeterminate version of an STL property @, at time 7, which returns a Boolean
value.

. Fg indicates the negative version of an STL property ¢, at time 7, which returns a Boolean value.

* X denotes a finite set of signals.

For all the proofs, we consider the following assumption:
e Leta,beT, wehavea<b

* Every temporal operator is evaluated on the time interval ¢ +a, +b]
* We consider only non-nested operators.
We admit the following result:

A, (X, 1) E@ <= (¥, (X,1)FE~0) (1)

Remark 1 (Partitioning of time interval). Since, by assumption, a < b, we can partition the set of time
T as T =[0;¢t +a[u[a,b[U[b,+oc0. Using the current time T, we can rely on the following terms: (T <
t+a)v(t2t+ant<t+b)v(t>t+b).

2 Properties

2.1 Partitioning: completeness and disjointness

Property 1 (Complete and pairwise distinct). At any time instant t, exactly one of the three logic returns
True for a given property.

T([, \Y Uqﬁ v Fqﬁ (completeness) 2)

~((TyAFp) Vv (TyAUy) v (UyAFy))  (disjointness) 3)
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2 Semantics proofs

2.2 Equivalence between online and offline logic

Property 2. From a specific time instant ty, the offline and online results are similar. Thus, the outputs
of the offline By and online T(P’ versions are equivalent. In the same way, the negation of the offline

. . . . . ty
operator is equivalent to the online negative version ¥ . For a non-nested temporal operator evaluated
on time interval [a,b], this time instant corresponds at the latest to t + b:

t2t+hb = ((By <= Ty)A(-By < Fy)) “4)

2.3 Operator determination

Remark 2 (Property determination). There exists an instant t; from which we cannot satisfy U(;,zt" . For
a non-nested temporal operator evaluated on time interval [a,b), ty corresponds at the latest to t +b.

g <t+b: Ve >15,-U, (5)

Property 3 (Immutability: Positive and negative logics are final). If a property is satisfied in the positive
(resp. negative) logic, it will remain so in the future.

3teT: T, — Vt'Zt,T(E, (6)
3eT:F) = Vi'>1,F) (7)
Remark 3. Leta,b,c€T and c > b.
Jtela,b]: 9 = Ftela,cl:o (8)
t'>t = t'+12¢ (€))
3 Eventually
3.1 Eventually definitions
Eventually offline:
(X, )EOp@ < 3 et+[a,b]: (X, 1) E@ (10)
Eventually online: P =, 519
T; t>t+an3telt+amin(t,t+b)]: (X, )EQ (11)
Up (t<t+a)v(t<t+baVhe[t+a,t],(X,n)E-0) (12)
F;, 12t+bAVtze[t+a,t+b],(X,;3)E-@ (13)
Let A, B and C such that:
A=3t e[t+a,min(t,t+b)]: (X,11)EQ (14)
B=Vhe[t+a,t],(X,0)E-Q (15)

C=Vtx3e[t+a,t+b],(X,13)E-Q (16)
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We obtain:
T, t>t+arA (17)
U;, t<t+av(t<t+bAB) (18)
F;, 1>t+bAC (19)

3.2 Completeness

Proof. Let us separate the consider time interval in three different sections as introduced above Il We
already showed that this separation includes all possible values of 7. Let us show that the property is
satisfied for each of these three intervals.

1. Starting hypothesis: 7 <t+a

t<t+an(TpvULVF})

> (t<t+anTh)v(t<t+anUp) v (t<t+anF})

> (t<t+anTh)v((t<t+ant<t+a)Vv(T<t+ant<t+b)v
(t<t+anB))v(t<t+anF})

According to the starting hypothesis, we can simplify as follows:

<> (t<t+anTh)vTruev(T<t+ant<t+b)v(T<t+aAB)v
(t<t+anF})
<= True (20)

2. Starting hypothesis: T>t+aAT<t+b

t2t+ant<t+bn(TpvULVEF})

(t>t+anA)
<= 12t+ant<t+ba|l\/ (t<t+av(T<t+bAB))
(t>1+bAC)

using eqs. (17) to (19).
<= T12t+anTt<t+bA(AVB)

simplifying and removing false cases in disjunction.

(3t €[t +a,min(t,t+D)],(X,11) EQ) )

<:>’L'2t+a/\f<t+b/\(\/ (Vae[t+a,t],(X,)E-0)

using eqgs. (14) and (15))

- (Y e[t+a,t],(X,n)E-0) )

<:>’L'2t+a/\’L'<t+b/\(\/ (V62 e [t+a.7]. (X 1) =)

simplifying and replacing 3Q by -V -Q.

<~ True 21



3. Starting hypothesis: T>7+b

t>2t+bA(TpvURVF})
<~ (t21t+bATh)V(T2t+bAUR) vV (T21+bAF})
<~ (12t+brT2t+anA)Vv(T2t+bAT<t+a)V

(t2t+bAT<t+bAB)vV(T2t+bAT>t+bAC)
According to (I]), we simplify as follows:

<= (12t+bAT2t+bANA)V(T2t+bAT<t+b)V
(t2t+bAT<t+bAB)vV(T2t+bAT2t+bAC)
<~ (12t+brT2t+bAA)V(T2t+bA-(T21+D))V
(t2t+bA=(12t+b)AB)V(T2t+bAT2t+bAC)
<~ (t>t+bAT>t+bAA)VFalsev False

V(T2t+bAT>t+bAC)
According to the starting hypothesis, we simplify as follows:

—=AVvC
< 3 e[t+a,min(t,t+b)]: (X,11) EQV

Vi3 €[t+a,t+b],(X,3)E-@

Semantics proofs

According to the starting hypothesis, we simplify [7 +a,min(t,t+b)] in [t +a,t +b]:

<~ I elt+a,t+b]: (X, n)EQVvVne(t+a,t+b],(X,3)E-@

Then, we use (I):

<:>—|(th € |:t+a,t+b],(X,t1)|:—|(P)V
Viset+a,t +b],(X,53) E-@

<= True

We demonstrated that:

(22)

* The division into three time intervals that we have used covers all possible cases for 7 (I);

* In each of these temporal intervals, there is always a version of the Eventually operator which is

True whatever 7 egs. (20) to (22).

We have therefore shown that the completeness property [2] is satisfied by the Eventually semantics for

any value of 7.

O]
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3.3 Disjointness

Proof. Let us come back to the exclusivity property

~[(TpAFp) v (TEAUR) v (Up AFR)]
> ~(TF AFp) A=(TpAUR) A=(Uj AFF) (23)

Let us consider separately the three different cases and show that they are satisfied by the Eventually

semantics.

* -(TpAF})

—(t2t+anAnT2t+bAC)

According to (I]), we simplify the time conditions as follows:

Then, we use (I)):

¢ A(T5AU})

> -(t21+bAANC)

<~ ~(t21+bA3ty €[t+a,min(T,t+b)]: (X, 1) E QA
Vi3 €[t+a,t+b],(X,13) E-@)

«— ~(t2t+bAJn€[t+a,t+b]: (X,11)EQA

Viz €[t +a,t+b],(X,13) E-@)

= (T2t+bA-(V1) € [t+a,t+b], (X, 1) E-@)A
Vise[t+a,t+b],(X,13) E-0)

<= -(t>t+bAFalse)

<= -False

<~ True (24)

~(t2t+anAn(t<t+av(T<t+bAB)))

— -((t2t+arAnT<t+a)Vv(T2t+aNAANT<t+bAB))

— -((t2t+an-(t2r+a)AA)v(T>t+anT<t+bAAAB))

<= —(Falsev(t>t+ant<t+bAAAB))

<= ~(T>t+anTt<t+bAAAB)

— ~(t2t+ant<t+bna3r €[t+a,min(t,t+b)]: (X,11) E QA

Velt+a,t],(X,n)E-9)

— ~(t2t+ant<t+ba3t €[t+a,t]: (X, 0)EQA

Viye[t+a,t],(X,0n)E-Q)
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According to (I]), we replace 3 by V as follows:
— ~(t21+ant<t+br-(Vt € [t+a,T],(X,11) E-Q)A
Vi et+a,t],(X,5)E-@)
<= ~(t>t+ant<t+bnFalse)
<= —False
<~ True 25)
+ ~(U5AF})
—((t<t+av(t<t+bAB))AT>t+bAC)
<~ -((t<t+ant2t+bAC)Vv(T<t+bABAT>t+bAC))
According to (I]), we simplify the time conditions as follows:

= -((t<t+bAT2t+bAC)V(T<t+bABAT2t+bAC))

«— -((t<t+bA=(1<t+D)AC)V(T<t+bABA=(T<t+b)AC))

<= —((False A\C) Vv (False ABAC))

<= —(FalseV False)

<= —False

<~ True (26)

Now, we can comeback to the beginning equation 4.3}
~(Tp AFp) A=(Tp AUR) A~(Up AFp) @27
Based on the results of eqs. (24) to (26)), we obtain:

<= TruenTrueATrue
<= True (28)

We showed that the disjointness condition is satisfied by the Eventually semantics.

3.4 Equivalence between offline and online logic
Proof.
t>t+b = ((Bp <= T;)A=(Bp <= F}))
> (t2t+b = Bp=Ti))A(t2t+b = (-Bp = F}))
Let us consider that 7 >7+b. Let us show that it implies that (Bp < T}) and (-Bp < F}) are True.
3t et+[a,b]: (Xt )Ep =
T>t+an3t €[t+a,min(T,t+b)]: (X,t1)E QA
(=(3t" et+[a,b]: (X, ) E@ <
T2t+bAVi3 €[t +a,t+b],(X,13)E-@)
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From m and the temporal hypothesis 7 > ¢ + b, we simplify as follows the time intervals and time condi-
tions:
A eft+a,t+b]: (Xt E@ <=
e [t+a,t+b]: (X,t1) EQA
(=(3t' e[t+a,t+b]: (X,t")F Q)=
Vi3 e[t +a,t +b],(X,13) E-0)
< True A (~(3t" €[t +a,t+b]: (X,t")E Q) =
Vize[t+a,t+b],(X,53) E-0)
According to (I]), we replace 3 by V as follows:
> ~(=Vt' e[t+a,t+b]: (X, )E-Q) =
Vize[t+a,t+b],(X,13) E-0
=Vt e[t+a,t+b]: (X, )E-Q <=
Vi3 €[t+a,t+b],(X,3)E-@
<= True (29)

3.5 Immutability: Positive and negative logics are final

Proof. * 3eT: Ty = VI’Zt,T(;I
Directly proven according to Remark[3]
. Lt ’ ¢’
teT:F, = Vi'>1,F,

Let us come back to the negative logic equation:

T2t+bAVtiz e[t +a,t+b],(X,53)E-@ (30)

T >1+b part is directly proven according to Remark 3]

Vi3 € [t +a,t +b],(X,13) E-@ is not affected by the current time so if the property was already
True at a time ¢', it is still the case at time ' + 1.

We showed that whatever the time ', if T} or F}}' is satisfied, it is still the case at time ¢/ + 1 O

4 Always

4.1 Always definitions

Always offline:
(X, t)EDpp @ < V' et+[a,b]: (X,1')E @ (31)
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Always online: O, ;19

T, ©>t+bAVt €[t+a,t+b], (X, 1))EQ (32)
U; (t<t+a)v(t<t+baVhe[t+a,t],(X,n)EQ) (33)
Fp, t2t+an3telt+amin(t,t+b)]: (X,53)E-0@ (34)

(35)

Let A, B and C such that:

A=Vt e[t+a,t+b],(X,t1)E@ (36)
B=Vne[t+a,t],(X,n)EQ 37
C=3¢(t+a,min(t,t+b)]: (X,t3)E-@ (38)

We obtain:
Tp T2t+bAA (39)
U; t<t+av(T<t+bAB) (40)
Fp, 1>t+anC 41

4.2 Completeness

Proof. Let us separate the consider time interval in three different sections as introduced in the property
[T} Let us show that the property is satisfied for each of these three intervals.

1. Starting hypothesis: T <?+a

t<t+an(TpvUpVF})
T>t+bAA)
T<t+a)

T<t+bAB)
T2t+anC)

(
—=t<t+an|\/ E
(
using eqs. (39) to (1).

<~ True
by disjunction.
42)

2. Starting hypothesis: T>¢t+aAT<t+b

t>t+ant<t+bn(TpvURVF})
(t>t+bAA)
(t<t+a)

(t<t+bAB)
(t>t+anC)

< 12t+ant<t+ba|\/
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using eqs. (39) to (1).
< 1>t+anT<t+bA(BVC)

simplifying and removing false cases in disjunction

(Ve [t+a,7],(X,0)EQ) )
Az eft+a,t]: (X,53)E-0)

simplifying and using eqs. and (38).

(Ve [t+a,t],(X,n) =) )
-(Vrze[t+a,7],(X.,3)EQ)

<:>th+a/\1:<t+b/\(\/

<=>12t+a/\r<t+b/\(\/

replacing 3Q by -V-Q.
<= True (43)

3. Starting hypothesis: 7>7+b

t>t+bA(TpvULVF})

(t>t+bAA)
(t<t+a)

(t<t+bAB)
(t>t+anC)

<~ T>t+bA \/

using egs. (39) to @I).
<~ 12t+bA(AVC)

(V1) € [t+a,t +b],(X,11) E Q) )

<=>‘L'Zt+b/\(\/ (I et+a,t+b]: (X,53)E-0Q)

simplifying and using egs. and (38).

(Vi e[t +a,t+b],(X,t1) = Q) )

— ’L’2t+b/\(\/ ~(Vize[t+a,t+b],(X,13) @)

replacing 3Q by -V-Q.
<~ True (44)

We demonstrated that:
* The division into three time intervals that we have used covers all possible cases for 7: eq.(I));

* In each of these temporal intervals, there is always a version of the Always operator which is True

whatever 7: eqs. (42) to (@4).

We have therefore shown that the completeness property [2]is satisfied by the Always semantics for any
value of 7. O
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4.3 Disjointness

Semantics proofs

Proof. Let us come back to the exclusivity property [3}

S[(TRAFE) v (Tp AUR) v (UR AF)]
= ~(TEAFR) A=(TEAUR) A-(ULAF}) (45)

Let us consider separately the three different cases and show that they are satisfied by the Always

semantics.

¢ A(T5AU})

<~ -(12t+bAAAT2t+anC)
using eqgs. (39) and (@1].
<= -(121+bAAANC)

by time simplification according to eq [}

(Vty € [t+a,t+b],(X,t1)E @)
‘E’ﬂ(””“(/\ (E|t3]€[t+a,t+b]:(é’c',tl3)i=ﬂ(p) ))

simplifying the time intervals according to eq[l|and using egs. and (38).

(Vtye[t+a,t+b],(X,11)=0)
@ﬁ(rszA(/\ ﬁ(v;;e[z+a,t+b],(X,tl3)l:(P) ))

replacing 30 by -V -0Q.

<= —False

<~ True (46)

(t>t+bnrA)
= (t<t+av(t<t+bAB))

using egs. and (@0).
<= —False
by conjunction on time intervals

<~— True (47)
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* ~(UprFp)

—-(v (t<t+ant>t+anC)
- (t<t+bABAT>t+aAnC)

using egs. and @1).
(t2t+ant<t+b)
| N\ (Vnelt+a,t],(X,n)=0)
(3 et+a,7]: (X,13)=-¢)
simplifying by conjunction on time intervals and using egs. and (38).
(t2t+ant<t+b)
— -\ (Vnelt+a,1],(X,n)=0)
_'(Vt3 € [l‘+(l,T],(X,l‘3) ':(p)
replacing 3Q by -V-Q.
<= —False
<= True (48)
Now, we can comeback to the beginning equation .3}
~(Tp AFE) A=(TFAUR) A=(Up AF}) (49)
based on the results of eqs. (46)) to (48), we obtain:

<= TruenTrue ATrue
<~ True (50)

We showed that the disjointness condition is satisfied by the Always semantics.

O
4.4 Equivalence between offline and online logic
Proof.
t>t+b = ((Bp <= Tp) A (-Bp <= F}))
> (12t+b = (Bp=T}))A(12t+b = (-Bp <= F})) (1)

Let us consider that 7 >7+b. Let us show that it implies that (Bp < T}) and (-Bp < F},) are True.

* 12t+b = (Bp<=T})
Bp corresponds exactly to A (eq[36). According to eq[39] equivalence is obtained directly.
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* T12t+b = (-Bp <= F})

= ~(Vt'e[t+a,t+b]: (Xt )E Q)=
(It e[t+a,t+b]: (X,13)E-0)

simplifying time intervals according to eq[I] and using egs. and

= -(Vt'e[t+a,t+b]: (Xt )EQ) <
~(Vise[t+a,t+b]: (X,13)E Q)

replacing 30 by -V -0Q.

<= True (52)

We demonstrate in section [{.4] that both parts of eq[51] are satisfied. Thus, we show that equivalence
between offline and online versions is respected by Always semantics, from time ¢ + b. O

4.5 Immutability: Positive and negative logics are final

Proof. « FeT:T) = V&'>1, T}

Let us come back to the positive logic equation:

T2t+bAVt e[t +a,t+b], (X, ) E@ (53)

T >1+Db part is directly proven according to Remark 3]

Vi) €[t +a,t+b],(X,t1) = @ is not affected by the current time so if the property was already True
at a time ¢/, it is still the case at time ¢’ + 1.

. Lt l '
3eT:F) = V' >1,F}

Directly proven according to Remark[3]

We showed that whatever the time ¢/, if T or F is satisfied, it is still the case at time ¢’ + 1 O

S Until

5.1 Until definitions

Until offline:

(X, 1) E QU2 < Tt €[t+a,t+b]: (X, 1) E @AV e[t,1'],(X,1")E @ (54)
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Until online: ¢1U, )92

T; t>t+an3telt+amin(t,t+b)]: (X, ))EQ A
Vi et,n],(X,0n)E@

Up ((t<t+a)aVie[t,t],(X,5)E@) v (T>t+anT<t+bA
Vige[t,7],(X,14) EQAVEs € [t+a,T],(X,15) E-@)

F; (Jtg e [t,min(t,t+a)]: (X, 1) E-@1) V
(t2t+ant<t+badtzelt+a,t]: (X, 7)) E-Q1A
—(Jrget+a,t]: (X, 13)E@ AV € [t,13],(X,19) Q1)) Vv
(T>t+bn
=(3tipe[t+a,t+b]: (X,t10) E@ AV €[t,t10],(X,011) E@))

Let A, B, C, D and E such that:

A=3ne[t+a,min(t,t+Db)]: (X,1)) E@AVn e[t,11],(X,5) E @
B=Vtse[t,7],(X,13)E @)
C=Vuyelt,t],(X, ) EQ AVts€[t+a,T],(X,15) E-@,)
D=3t €[t,min(t,t+a)]: (X,t6) E-@

[

E=3t¢ t+a,’L’] : (X,t7)|:ﬂq)1
We obtain:

T; ©>t+anA
Up (t<t+anB)v(t2t+ant<t+baC)
F, Dv(t2t+ant<t+bAEA-A)V(T>t+bA-A)

5.2 Completeness

13

(55)

(56)

(57)

(58)
(39
(60)
(61)
(62)

(63)
(64)
(65)

Proof. Let us separate the consider time interval in three different sections as introduced in the property

[T} Let us show that the property is satisfied for each of these three intervals.

1. Starting hypothesis: T <t+a

t<t+an(TpvULVF}R)

T>t+anA

T<t+aAnB
T2t+ant<t+bnC

D
T2t+anTt<t+brAnEA-A
T2t+bA-A

= t<t+an|\/
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using egs. (63) to (63).
<= 1<t+an(BvD)

simplifying and removing false cases in disjunction
Vi3 € [tva (X7t3) F O
= (\/ e e [t,7]: (X 16) E-@
simplifying the time intervals and using eqs. (59) and (61).

Vi3 €[t,7],(X,5) =@
=V =Vige[t,7]: (X,16) @

replacing 30 by -V -Q.
<= True (66)

2. Starting hypothesis: T>¢t+aAT<t+b

t2t+ant<t+bA(TpvULVFR)

T>2t+anA
T<t+aAB
T>t+ant<t+bnC
<= T2t+aAT<t+bA V’D
T2t+anT<t+bAEA-A
T>t+bA-A

using egs. (63) to (63).

<= T1>21+aAT<t+bA(AVCVDV(EA-A))
simplifying and removing false cases in disjunction

Jnelt+a,t]: (X, 01)E@A
Vtze[t,tl],(X,tz)IZ(pl
Vige[t,7],(X,14) E @ AVEs €[t +a,T],(X,15) -
|\ Fgelr,t+al: (X,t6) -
Jt7e(t+a,t]: (X,t7) E-Q1A
-3 e[t+a,7]: (X,11)E@A
Vi et,n],(X,0)E@)

simplifying the time intervals and using eqs. (58] and (60) to (62).

Let’s consider the following hypothesis, and then its opposite:

. VZUE[Z,T],(X,Z‘U)DZQ)I <~ ﬂﬂl‘UE[Z‘,T]I(X,tn)I:ﬂq)li

A et+a,7]: (X,n)E@
- (\/ Vits € [t+a,f:|,(X,t5)|=—\(P2
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simplifying and removing false cases in disjunction according to the hypothesis

(v -Vt elt+a,t],(X,t1)E-@
Vise[t+a,t],(X,t5) E-@2

<~ True
. ﬂthe[t,r],(X,tU)i:(pl <~ E|t11€[t,T]Z(X,l‘11)|=ﬂ(p12

A
\/ Jeeltt+al:(X,t6) -0
dt7 € [t+aaf:| : (X,[7)':—'(P1 A-A

Again, let’s divide our proof in two sub-goals:
o Ttee(t,t+al:(X,t6)E-@r:
<= True

simplifying and removing false cases in disjunction according to the hypothesis
o —dtgeft,r+al: (X,t6)E-@r:
= AV-A

simplifying the time intervals and removing false cases in disjunction according to the hypothesis

<~ True 67)

All sub-goals have been proved, so the completeness of Until for 7 such that T>¢+aAT<t+b.
3. Starting hypothesis: 7>7+b
T>t+bA(TpvULVF})
T>2t+anA

T<t+anB

T2t+ant<t+bnC
<~ T>t+bA \/ D

T2t+ant<t+bAnEAN-A
T2t+b/\—|A

using egs. (63) to (63).
<= 12t+bA(AVDV-A)

simplifying and removing false cases in disjunction

<= True (68)

We demonstrated that:
* The division into three time intervals that we have used covers all possible cases for 7: eq.(I));

* In each of these temporal intervals, there is always a version of the Until operator which is True
whatever 7: egs. (66) to (68).
We have therefore shown that the completeness property [2] is satisfied by the Until semantics for any

value of 7.
O
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5.3 Disjointness
Proof. Let us come back to the exclusivity property
[(TEAFE) v (TEAUR) v (URAFE)]
> ~(Tp AFp) A=(THAUR) A-(Up AF}) (69)

Let us consider separately the three different cases and show that they are satisfied by the Until
semantics.

« ~(T5AUp)
<~ -((t2t+anA)A((t<t+arB)v(t>t+ant<t+bnC)))

using eqgs. (63) and (64).

\/ T>t+anNAANT<t+aAnB
T2t+aNAANT>t+anT<t+bnC

T2t+ant<t+b

I et+a,t]: (X, )E@
|\ Voel,ul,(X,n)=o
Vig e [t,7],(X,t4) E @y
Vise[t+a,t],(X,t5) E-~@a

simplifying the time intervals and removing false cases in disjunction.

T>2t+ant<t+b
Vi €[t+a,t]: (X,0)E-@
| N\ Vise[t+a,7],(X,t5) -,
Vi € [t,t1],(X,0) =@
Vity € [Z,T],(X,M)IZQD]

replacing 3Q by -V-Q.
<= —False
by conjunction.
<= True (70)
« ~(TjAF})
= -((t2t+anA)a
(Dv(t>t+ant<t+bAEA-A)V(T>t+bA-A)))

using eqgs. (63) and (65).

T>t+anAAD
|\ 12t+anAAT2t+anT<t+bAEA-A
T2t+anAANT>t+bA-A

< - T>t+anAAD
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removing false cases in disjunction

T>2t+a

3t e[t+a,min(t,t+b)]: (X,01)E @
= /\ VIQE l‘tl] (X l‘2)|=(p1

Jte € [t,min(T,t+a)]: (X, tc) -y
simplifying and using eqs. (58) and (61).
T2t+a
3r € [t+a,min(t,t+b)]: (X, 1) =@
— - /\ Vit € [l‘,t+a],(/¥,2‘2) EQp
Vit € [t+a,t1],(X,t2b)l=q)1
—Vige[t,t+a]: (X,16) E
developing time intervals and replacing 3Q by —=V-Q.
<= —False

by conjunction.

<= True an
* ~(UpAF})

< ~(((t<t+anB)v(t2t+ant<t+brC))A

(Dv(t>t+ant<t+bAEA-A)V(T2t+bA-A)))

using eqgs. (64) and (65).

T<t+aABAD
T<t+aABAT2t+anT<t+bAEAN-A
T<t+aABAT2t+bA-A

\/ T2t+ant<t+bAnCAD
T2t+anT<t+bACAT2t+anT<t+bAEA-A
T2t+anT<t+bACAT>t+bA-A

T<t+anBAD
|\ t2t+ant<t+bACAD
T2t+antT<t+bACAEAN-A

simplifying and removing false cases in disjunction.

Satisfaction of the property means that each of these 3 cases should be false. Let’s consider them
separately:

e T<t+anBAD:

T<t+a

/\ Vt'j € [t,T],(X,t3)'=(P1
Jte € [1,7]: (X,16) B¢y
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simplifying and using eqs. (59) and (61).

T<t+a

N Vet t],(X.5)Ee
-Vige[t,7]: (X, t6) E @

replacing 30 by -V -Q.
<= False

* T>t+anT<t+bACAD:

T2t+anT<t+b
Vg€ [t, 7], (X, t4) E @y
=|A Vise[t+a,t],(X,t5) -
Jtg € [t,min(T,t+a)]: (X,t6) E-¢

simplifying and using eqs. (60) and (61).

T2t+ant<t+b
—Vig e [t,t+a]: (X,t6) E @
N\ Vielt,t+al,(X,1)E@
Vi € [l‘+a,T:|,(X,l‘4b) EQp
Vis e [t+a,t],(X,t5) E-@

developing time intervals and replacing 3Q by -V -=Q.
<= False

 T>t+anT<t+bACAEA-A:

Vige[t,7],(X,a) E @
Vise[t+a,t],(X,t5) -~
N\ Frelt+a,7]: (X, 167) -y
=(3t; € [t +a,min(T,t+b)]: (X,t1)E Q2A
Vi et,n],(X,)E@r)

simplifying and using eqgs. (58), (60) and (62).

Vige[t,t+a],(X,14) E @
Vt4b6[t+a T] (X,l‘4b)l=(p1
-Vtyet+a,t]: (X,t7)EQ
= A Vise[t+a,t],(X,t5) =E-@
-(3t € [t+a,min(t,t+D)]: (X,11) E Q2
Vi e[t,n],(X,0)E@)

developing time intervals and replacing 3Q by -V Q.

<= False (72)
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Each case of the previous disjunction are false. We obtain ~False <= True; the property is
satisfied for this temporal interval.

Now, we can comeback to the beginning equation
~(TpAFp) A=(TpAUR) A=(Up AFR) (73)
based on the results of egs. (70) to (72), we obtain:

<~ TrueATrueATrue
<~ True (74)

We showed that the disjointness condition is satisfied by the Until semantics.

0
5.4 Equivalence between offline and online logic
Proof.
t>t+b = ((Bp < Th) A (-Bp < F}))
> (12t+b = (Bp=Tp))A(t2t+b = (-Bp < F})) (75)

Let us consider that 7 >7+b. Let us show that it implies that (Bp < T}) and (-Bp < F},) are True.

e 121+b = (Bp=T})

<= T12t+bA (3t e[t+at+b]: (X, )EQ A
V" e[t,t'],(X, ") E Q) =
t2t+bA(T2t+an3t € t+a,min(t,t+b)]: (X,1)E @A
1.(

Vtze[t,ll t2)|:(p1)

using egs. and (63).
<= T2t+bA (3 e[t+a,t+b]: (X, I)EQ A
V' e[t,t'],(X, 1) E Q) <
t2t+bA (3 eft+at+b]: (X, 0)EQ A
Vi e [t,1],(X,)E@r)
simplifying time intervals

<~ True (76)
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* 12t+b = (-Bp = F})
> —(t2t+bA (3t et+a,t+b]: (X, ) E@ A
vt e[t,t'],(X, 1) E@)) <
Dv(t>t+bA-A)
using egs. and (65).
= -A<Dv-A

This proposition is true only if (-(-A) = -D) < (A = -D)

e A=— -D
< I e[t+a,min(t,t+b)]: (X, 1)) E@ A
Vhelt,n],(X,h)E@ —
ﬂ(EIt(, € [t,min(t,t+a)]: (X, 1) |=ﬂ(p1)
using eqgs. (54) and (65).
<~ 3dneft+a,t+b]: (X, n)EQ A
Vet t+al,(X,n)EQAVhe[t+a,t],(X,n)EQ —
Vig e [t,t+a]: (X,t6) E @
replacing 3Q by -V-Q, simplifying and developing time intervals.

<= True amn

We demonstrate in section [5.4]that both parts of eq [5T] are satisfied. Thus, we show that equivalence
between offline and online versions is respected by Until semantics, from time ¢ + b. O

5.5 Immutability: Positive and negative logics are final

Proof. * JeT:T) = V&'>1,T)

Let’s remind the positive version of Until:
t>t+ant €t+a,min(T,t+Db)]: (X,1h)E@ AL € [t,0],(X,0)E@

From remarks eqgs. (8) and (9)), we can directly conclude that equation|[6]is satisfied.
« JteT:F) = V'>1,F]
Let’s remind the negative version of Until:

Dv(t2t+ant<t+bAEAN-A)V(T2t+bA-A)

We can divide this equation in three different cases.
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-D
— T2t+anT<t+bAEA-A
- T>2t+bA-A

Let’s show that the equation [/|is satisfied for each of these three cases.

- D < 3ige[t,min(t,t+a)]: (X,16) =-¢; This one is immediately satisfied according to

Bl

— T2t+anT<t+bAEA-A

<= T2t+anT<t+bAFt;et+a,T]: (X,t7)E-QIA
=(3t; € [t+a,min(T,t+b)]: (X,t;) E @A
Vi, € [I,tl],(X,Q)':(Pl)

<= T2t+ant<t+bATruen—(3t €[t +a,t7]: (X,11) E @A
Vi, € [t,tl],(X,tz)':(Pl)

by temporal simplification on time intervals and according to remark [§]

=(3t € [t+a,t7]: (X,11) E@ AV € [1,11],(X,12) = @) do not depend of the T value so if it
is True at time 7/, it will still be True at time ' + 1:

<< T>t+ant<t+b (78)

If ' +1 <t +b, this case is immediately satisfied. Else, we are in the case where ' + 1 =1 +b
and ¢’ <t +b. This case is addressed by the next point.

—t'>2t+bA-Aort’'+12t+br-A
<~ dneft+a,t+b]: (X, n)E@AVne[t,11],(X,5n) =@ (79)
by temporal simplification.
(80)

Result is not affected by the current time so if the property was already True at a time ', it is
still the case at time 7' + 1.

We showed that whatever the time 7', if T} or F}}' is satisfied, it is still True at time ¢" + 1
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